The efficacy of the novel dual PI3-kinase/mTOR inhibitor NVP-BEZ235 compared with rapamycin in renal cell carcinoma.
نویسندگان
چکیده
PURPOSE Inhibitors of TORC1 have been shown to be active in patients with metastatic renal cell carcinoma (RCC). As the phosphatidylinositol 3-kinase (PI3K) pathway activates numerous other kinases, transcription factors, and proteins associated with cell growth and survival besides mammalian target of rapamycin (mTOR), disruption of this pathway upstream of mTOR may be more effective than inhibition of TORC1 alone. EXPERIMENTAL DESIGN To investigate this possibility, the dual PI3K/mTOR inhibitor NVP-BEZ235 was compared with rapamycin in RCC cell lines and xenografts generated from 786-O and A498 cells. RESULTS Treatment of RCC cell lines with NVP-BEZ235 in vitro resulted in the nuclear translocation of p27, greater reduction in tumor cell proliferation, and more complete suppression of Akt, Mnk-1, eIF4E, and 4EBP-1 phosphorylation and cyclin D1 and hypoxia-inducible factor 2alpha (HIF2alpha) expression than that achieved with rapamycin. The reduction of HIF2alpha levels correlated with reduced HIF activity as determined by luciferase assay. NVP-BEZ235 induced growth arrest in both the 786-O and A498 xenografts that was associated with inhibition of Akt and S6 phosphorylation as well as the induction of apoptosis and reduction in markers of tumor cell proliferation. In contrast, rapamycin induced only minimal growth retardation. CONCLUSION Dual inhibition of PI3K/mTOR with NVP-BEZ235 induced growth arrest in RCC cell lines both in vitro and in vivo more effectively than inhibition of TORC1 alone. These results provide the rationale for the clinical assessment of agents such as NVP-BEZ235 in patients with advanced RCC.
منابع مشابه
PI3K and mTOR inhibitor, NVP-BEZ235, is more toxic than X-rays in prostate cancer cells
Background: Radiotherapy and adjuvant androgen deprivation therapy have historically been the first treatment choices for prostate cancer but treatment resistance often limits the capacity to effectively manage the disease. Therefore, alternative therapeutic approaches are needed. Here, the efficacies of radiotherapy and targeting the pro-survival cell signaling components epidermal growth fact...
متن کاملAutophagy inhibition enhances colorectal cancer apoptosis induced by dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235
Phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway performs a central role in tumorigenesis and is constitutively activated in many malignancies. As a novel dual PI3K/mTOR inhibitor currently undergoing evaluation in a phase I/II clinical trial, NVP-BEZ235 indicates a significant antitumor efficacy in diverse solid tumors, including colorectal cancer (CR...
متن کاملGrowth inhibition by NVP-BEZ235, a dual PI3K/mTOR inhibitor, in hepatocellular carcinoma cell lines.
Dysregulation of the phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway frequently occurs in human tumors, and is therefore considered to be a good molecular target for treatment. In hepatocellular carcinoma (HCC), overexpression of p-Akt and decrease of PTEN expression have been reported. NVP-BEZ235 is a novel dual inhibitor of PI3K and mTOR; however, its effect ...
متن کاملIdentification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity.
The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin inhibitor (mTOR) pathway is often constitutively activated in human tumor cells, providing unique opportunities for anticancer therapeutic intervention. NVP-BEZ235 is an imidazo[4,5-c]quinoline derivative that inhibits PI3K and mTOR kinase activity by binding to the ATP-binding cleft of these enzymes. In cellular setting...
متن کاملNVP-BEZ235, a novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor, elicits multifaceted antitumor activities in human gliomas.
Aberrant genetic alternations in human gliomas, such as amplification of epidermal growth factor receptor, mutation and/or deletion of tumor suppressor gene PTEN, and mutations of PIK3CA, contribute to constitutive activation of the phosphatidylinositol 3-kinase (PI3K) pathway. We investigated the potential antitumor activity of NVP-BEZ235, which is a novel dual PI3K/mammalian target of rapamyc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 16 14 شماره
صفحات -
تاریخ انتشار 2010